5 research outputs found

    Cyclic Timetable Scheduling Problem on High-speed Railway Line

    Get PDF
    Due to several obvious advantages both in transport marketing and train operation planning, the cyclic timetable has already applied in many high-speed railway (HSR) countries. In order to adopt the cyclic timetable in China's HSR system, a Mixed Integer Programmer (MIP) model is proposed in this paper involving many general constraints, such as running time, dwell time, headway, and connection constraints. In addition, the real-world overtaking rule that concerning a train with higher priority will not be overtaken by a slower one is incorporated into the cyclic timetable optimization model. An approach based on fixed departure is proposed to get a cyclic timetable with minimum total journey time within a reasonable time. From numerical investigations using data from Guangzhou-Zhuhai HSR line in China, the proposed model and associated approach are tested and shown to be effective

    Inserting Extra Train Services on High-Speed Railway

    Get PDF
    With the aim of supporting future traffic needs, an account of how to reconstruct an existing cyclic timetable by inserting additional train services will be given in this paper. The Timetable-based Extra Train Services Inserting (TETSI) problem is regarded as an integration of railway scheduling and rescheduling problem. The TETSI problem therefore is considered involving many constraints, such as flexible running times, dwell times, headway and time windows. Characterized based on an event-activity graph, a general Mixed Integer Program model for this problem is formulated. In addition, several extensions to the general model are further proposed. The real-world constraints that concerning the acceleration and deceleration times, priority for overtaking, allowed adjustments, periodic structure and frequency of services are incorporated into the general model. From numerical investigations using data from Shanghai-Hangzhou High-Speed Railway in China, the proposed framework and associated techniques are tested and shown to be effective

    Predicting Short-term Bus Ridership with Trip Planner Data: A Machine Learning Approach

    No full text
    To address the increasing passenger demand in the coming years and make public transport less crowded and delayed, insights into predicted passenger flow are needed. A wide range of studies has used and validated that smart card data can be one of the sound bases for predicting short-term passenger demand. However, it also has several disadvantages, such as the relatively long collection time, the insufficiency to reflect the relationship between passenger behavior and ridership. Trip planner data, which emerged as a type of real-time transit information, could reduce the perceived waiting time of passengers and increase the transit ridership due to the improved satisfaction. Combining these two types of data could potentially cater to the interest of operators in matching the vehicle supply and passenger flow demand at an operational level. Our results show that it is novel and useful to incorporate trip planner data in short-term ridership prediction, however, entirely based on this kind of data would be inaccurate. Random Forest Regression outperforms the other six models that we have selected. The request-related features (variables) can take up 20% of the importance of short-term ridership prediction

    Identification of the Hierarchy in Public Transport Networks based on Passenger Flow Patterns

    No full text
    In this study, a data-driven, generic and transfer-based methodology for separation and ranking the PTNs has been put forward. With the hierarchy of a network, this is beneficiary for the management and operation of operators for focusing on the higher level network layer and in turn provide better service for passengers. The study introduces three steps to rank the hierarchy of a PTN: (1) using the passenger journey and ride data to derive transfer flow matrix; (2) applying C-space network representation with community detection method to separate and visualize the PTN layer; (3) performing ranking method, regarding inner- and intra- transfer flow. To this end, the hierarchy of a PTN could be presented with temporal attributes. Different day of week and various time period of a day could potentially yield different hierarchy. The proposed unsupervised learning algorithm is based on passenger transfer flow data, independent from geographic location and the mode of transportation. The study shows that the level is changing based on the selected time slot and can be a mixture of different modes, which is dissimilar from the hierarchy purely based on qualitative method

    Assessment of architectures for Automatic Train Operation driving functions

    No full text
    Automatic Train Operation (ATO) is well-known in urban railways and gets increasing interest from mainline railways at present to improve capacity and punctuality. A main function of ATO is the train trajectory generation that specifies the speed profile over the given running route considering the timetable and the characteristics of the train and infrastructure. This paper proposes and assesses different possible ATO architecture configurations through allocating the intelligent components on the trackside or onboard. The set of analyzed ATO architecture configurations is based on state-of-the-art architectures proposed in the literature for the related Connected Driver Advisory System (C-DAS). Results of the SWOT analysis highlight that different ATO configurations have diverse advantages or limitations, depending on the type of railway governance and the technological development of the existing railway signaling and communication equipment. In addition, we also use the results to spotlight operational, technological, and business advantages/limitations of the proposed ATO-over-ETCS architecture that is being developed by the European Union Agency for Railways (ERA) and provide a scientific argumentation for it
    corecore